Generation Methods of Elliptic Curves
نویسنده
چکیده
Let q be a prime power, and let E be an elliptic curve over the field F q of q elements. As usual we associate to E a finite set called the set of rational points of E over F q. We denote this set by E(F q). We will explain these terms in Chapter 2. Once we know that E(F q) actually is a finite Abelian group, we may define the discrete logarithm problem in E(F q) as usual. However, since the use of elliptic curves in cryptography, various algorithms to solve the discrete logarithm problem in the group of rational points of an elliptic curve have been found. Hence, in order to keep the discrete logarithm problem intractable, we have to choose the elliptic curve diligently. As of today the security of an elliptic curve cryptosystem is determined by the cardinality of E(F q). Thus in order to decide whether a group of rational points is suitable for use in cryptography, we have to know its group order. It turns out that in general this is a burdensome and nontrivial task. The following methods are known to find a suitable group. The first approach, mostly referred to as the random approach, first chooses a random curve E. Using point counting algorithms, the group order of E(F q) is determined. Once the cardinality is known, we can decide whether the group is suitable for use in cryptography or not. If it turns out that the curve does not yield a secure cryptosystem, a new elliptic curve is chosen. The second method makes use of the theory of complex multiplication. It is therefore referred to as the complex multiplication method. We abbreviate this method by CM-method. Its proceeding is quite different from the random approach. In the complex multiplication method one first searches for candidates of a suitable group cardinality. This can be done without knowing the corresponding elliptic curves. Once a suitable cardinality is found, the elliptic curve is determined using complex multiplication. Finally, let q = p n be a prime power with n > 1. In addition, let m be a positive divisor of
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کامل